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In conclusion it can be stated that the enantio- 
morph-specific refinements and extensions described 
here are capable of improving the electron-density 
maps of large molecules. Its limit of applicability, and 
the possible improvements suggested in this para- 
graph, will be pursued further. 
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Abstract 

A generalized maximum determinant rule is shown to 
be equivalent to maximizing the integral, of the 
logarithm of the electron density, i.e. equivalent to the 
'maximum entropy method' (MEM) of image recon- 
struction. Relations between the structure factors and 
the Fourier coefficients of the reciprocal of the electron 
density follow, leading to new algorithms for phase 
determination and refinement. Although structures with 
equal, spherical, resolved atoms automatically satisfy 
the MEM phase relations, the method really requires 
only positivity and 'peakiness' of the electron density. 

Editorial note: The similarity between this and the following 
paper, by Britten & Collins [Acta Cryst. (1982), A3& 129-132], 
has been recognized and, although they represent completely 
independent work, they have been published together to facilitate 
comparison. 

0567-7394/82/010122-07501.00 

1. Introduction 

The maximum determinant method (MDM) of 
crystallography (Lajzerowicz & Lajzerowicz, 1966; 
Tsoucaris, 1970) has received fair attention as an 
alternative 'direct method' to the conventional 
approach of estimating low-order structure invariants 
and seminvariants (Sayre, 1952; Ladd & Palmer, 
1980). Tsoucaris (1980) describes the use of the MDM 
to rederive low-order relations, determine phases ab 
initio (from medium-sized determinants), and refine and 
extend phases (from large determinants). In this paper 
we give a new interpretation of the MDM and use it to 
draw a number of conclusions of relevance to 
crystallography. 

We introduce in § 2 a theorem relating a certain limit 
of the Karle-Hauptman (1950) determinant to the 
integral of the logarithm of the electron density in the 
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crystal unit cell. The proof of this theorem is presented 
in § 5. Using the above theorem, we show in § 3 that 
the MDM is closely related to one of the forms of the 
maximum entropy method (MEM) of image recon- 
struction. We apply the MEM to the phase problem and 
show that it leads to interesting phase relationships 
which can be made the basis of algorithms for phase 
refinement. We argue that such schemes will probably 
be significantly faster than current approaches to the 
MDM. We discuss in § 4 some of the properties of the 
MEM solution. We show that the solution may not be 
unique. However, all structures with equal, spherical, 
resolved atoms automatically satisfy the MEM phase 
relations. We make general statements on the shapes of 
peaks in the reconstructed electron density and suggest 
on this basis that a second form of the MEM may be 
more appropriate for crystallographic applications. 

2. A theorem on Karle-Hauptman determinants 

We are in principle interested in the limit d 
[= (2p + 1) 3] --, oo, although, in practice, we would 
select some large value of p such that all the boundary 
structure factors have decayed sufficiently in ampli- 
tude. We now state the following theorem: 

1 i f  Lim - In D d = In [ V, p(r)] d V,. (6) 

v, 

This is a special case of the remarkable theorem 
proved by Szeg6 (1920) for one-dimensional functions: 

1 1 f Lim - T r [ E ( A d ) ] =  E [ V , p ( r ) l d V , ,  (7) 
d~ood 

v, 
where E corresponds to any continuous function and 
A d is the Karle-Hauptman matrix. Szeg6's proof 
employs complex variable theory and cannot be 
generalized to higher dimensions. We give an alterna- 
tive proof of (6) in § 5 which is valid for all dimensions. 

The structure factor FH of a crystal with electron 
density p(r) in a unit cell of volume V, is defined as 

3. Relationship between M D M  and MEM 

F n =  f p(r) exp(27riH.r) dV, (1) 
v, 

with the inverse relation 

1 
p(r) = ~ Z Fnj exp(-2zriHj.r),  (2) 

Hj 

where the Ht are reciprocal-lattice vectors. Let us 
choose d reciprocal vectors H 1, H 2, ..., H d arbitrarily 
and use the notation 

Fpq=Fn°_Ho; p , q = l , 2  . . . . .  d. (3) 

The positivity of the electron density p(r) for all r then 
implies that the Karle-Hauptman (1950) determinant 
Da (of dimensionality d x d) written below is non- 
negative 

i.e. D d = 

Fo Fl2 . . .  Fl d 

F2, Vo . . .  F2 d 

r , ,  V,2 ... Vo 

>0.  (4) 

This relation is rigorous for all d and for all choices of 
H 1 . . . . .  H d. In practice, D d is written in terms of unitary 
structure factors Uij (= F i i / Z  f ,  where Z is the total 
number of electrons per unit cell and f is an average 
atomic 'shape factor'). 

Without loss of generality we consider D d to be 
defined in terms of Fi i [as in (4)] rather than the more 
usual Ui i. Let us choose HI . . . . .  H d such that they 
entirely fill the following cube in reciprocal space 

Hi = (hkl); h, k, l = - p ,  - p  + 1 . . . . .  p. (5) 

The MDM goes beyond the inequality (4) by stating 
that 

D d = maximum (8) 

and uses (8) in the applications mentioned in § 1. In 
deriving (8), D d is written in terms of U u which are 
assumed to correspond to a crystal with equal point 
atoms. Moreover, a result derived for the conditional 
probability of one set of phases, given other phases, is 
generalized to one referring to the joint  probability of all 
phases (Tsoucaris, 1980). In fact, Heinerman, Krab- 
bendam & Kroon (1979) have derived the true joint 
probability distribution. Although their result shows 
some similarity to (8), it is clear that the MDM should, 
at present, be regarded as a heuristic principle. We 
present below an alternative approach to interpreting 
the method. 

By (6) we see that the problem of maximizing D d, in 
the limit of large d, with respect to the unknowns 
occurring in it (which are the phases of the reflections 
with known amplitudes, and both the amplitudes and 
the phases of the rest), is equivalent to maximizing 

S = .[ lnlp(r)l dV~. (9) 
v, 

This is identical to one of the forms of the MEM of 
image reconstruction, which has been widely discussed 
in the context of geophysics (Burg, 1967, 1975; Smylie, 
Clarke & Ulrych, 1973) and radio astronomy (Ables, 
1974; Komesaroff, Narayan & Nityananda, 1981, and 
references therein). 

The maximization of S leads to new relations which 
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help in interpreting the MDM and also in its implemen- 
tation. We write the structure factor Fn in the modulus 
phase form 

FH= IFnl exp(itpn). (10) 

We introduce the Fourier coefficients Gn of the 
reciprocal of the electron density 

fl 
G n =  IGnl exp(i0n)= - ~ .  exp(2~ziH.r)dVr. (11) 

i..~ x+it ! 
E. 

We also rewrite (2) in the following explicit form which 
takes note of Friedel's law 

1 { Y+' 
p(r) = ~ F 0 + IF.I [exp(iq~u,-- 2?riHj.r) 

Hj 

+ exp(--iq~n, + 2niHi.r)] } , (12) 

where Y' implies summation over half the reciprocal 
space. If we substitute (12) into (9), it is possible to 
show that 

coS 2 
- - - -  IG.jl cos (tpn, -- 0n), (13) 
coIFH, I V~ 

coS 2 
- - -  IF.jllC. I s in(e.j-0. , ) .  (14) 
co~, v, 

The maximization of S therefore leads to the following 
results: 

(a) For all H where both the amplitude and phase of 
Fn are unknown, 

G.  = 0 .  (15) 

This result is well known (Burg, 1967). 
(b) Where the modulus of Fn is known, but not its 

phase, then (Narayan & Nityananda, 1981) 

s i n ( ~  - 0n) = 0. (16) 

There are two standard approaches to the practical 
implementation of a variational scheme such as the 
maximization of S. (a) One could seek an iterative 
fixed-point scheme on the basis of (15) and (16). (b) 
One could develop gradient-type algorithms using (13) 
and (14). Willingale (1981) has a fixed-point scheme 
for applications of the MEM in X-ray astronomy where 
(15) alone occurs. The present authors have obtained 
encouraging results with the phase problem in simple 
one-dimensional simulations where the gradient method 
easily solves the 'structure' from initial random phases 
(Narayan & Nityananda, 1981). Although our ex- 
perience with the MEM for phase refinement has so far 
been limited to small-scale problems, we are optimistic 
about its relevance and usefulness to 'real' problems. 

A feature of both the fixed-point and gradient 
approaches is that they can be made very efficient by 
the  incorporation of the fast Fourier transform 

algorithm. Since two FFT's will compute all the GH 
simultaneously, it seems likely that these approaches 
will be much faster than current algorithms for the 
MDM which directly maximize D d by determinant 
manipulations and matrix inversion. This expectation is 
yet to be verified. 

The MEM is known to be sensitive to the value of F 0 
assumed (Bhandari, 1978; Komesaroff et aL, 1981). 
For the pure Fourier extrapolation problem (equation 
15), lower values of F 0 lead to flatter baselines and 
sharper peaks, but slower convergence (Nityananda & 
Narayan, 1982). For the pure phase refinement problem 
(equation 16), the effect of F 0 on convergence and 
baseline remains, though resolution is no longer a 
factor. There is another interesting effect of F 0. In 
experiments with simple one-dimensional structures 
such as in Narayan & Nityananda (1981), it was found 
that when large values of F 0 are used, the MEM 
sometimes leads to a centrosymmetric solution* even 
though the structure factors are computed from a 
non-centrosymmetric structure. For these reasons, one 
should not use the true value of F 0 in calculations with 
the MEM, but rather a higher value, selected on the 
above considerations. We may add that when there are 
errors in the measured IFHI, the electron density will go 
negative and the Karle-Hauptman inequality, (4), will 
itself be valid only if F 0 is increased sufficiently. The 
value of F 0 has to be carefully chosen in density 
modification schemes also (see, for example, Nixon & 
North, 1976). 

4. Properties of the MEM solution 

Equation (16) leads to the following non-trivial'P 
ambiguity for each H: 

o r  

tp .=  OH 

(fill = OH "4- 7L (17) 

It is true that many of these possibilities may not be 
realized or may result in minima and saddle points of S 
in 'phase space'. However, one cannot rule out the 
existence of many maxima. The MEM solution to the 
phase problem is therefore not unique. This is in 
contrast to the Fourier extrapolation case (equation 
15), where the solution can be shown to be unique 
(Burg, 1975; Nityananda & Narayan, 1982). 

We now demonstrate the special relevance of the 
MEM to equal-atom structures. Consider a structure 
consisting of equal, spherical, resolved atoms. By 

* It will be noted that all centrosymmetric  structures auto- 
matically satisfy equation (16). 

t As against trivial ambiguities related to the choice of  origin and 
enantiomorph. 
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arguments similar to those employed by Sayre (1952), 
the electron density would satisfy the following relation 

1 
- p(r)  * s (r) ,  ( 1 8 )  

p(r) 

where s(r) is a spherically symmetric 'shape' function 
and * denotes convolution. Equation (18) leads to 

GH = FHjS(IHjl) ,  (19) 

where S(IHjl) is real. We note that (19) leads to the 
MEM phase relations (16) or (17). We thus see that 
structures with equal, spherical, resolved atoms are 
automatically solutions of the MEM. Moreover, the 
sign of S(IHjl) can be used to resolve the ambiguity in 
(17). Although the discussion here is based on 
maximizing S as defined in (9), the result is clearly true 
for maximizing any general function of the form (7). 

Despite the above arguments, it should be noted that 
the MEM does not require the assumption of equal 
atoms. Nityananda & Narayan (1982) have shown in 
another context that the basic requirement for the 
successful application of the MEM is that the function 
being reconstructed should be 'peaky' and have a flat 
baseline. Therefore, in crystallographic applications, 
the MEM (or MDM) should be useful so long as there 
are separate, well-defined atoms, though they may be 
unequal. 

The form of p(r) reconstructed by maximizing (9) 
has the following properties. Firstly, p(r) will be positive 
at all r because of the occurrence of ln[p(r)]. Secondly, 
the maxima in p(r) arise from the minima in [p(r)] -i. By 
(15), [p(r)] -1 has only a finite number of non-vanishing 
Fourier coefficients clustered around the origin and is 
therefore Taylor expandable about its minima. The 
peaks in p(r) are therefore of the approximate form: 

p(r) ~_ P(r0)[ 1 + ½(r-- r0) r Q ( r -  r0)1-1, (20) 

which are generalized Lorentzians (Q is a matrix of 
second derivatives and r o is the position of the peak). 
Now, the true electron density distributions of atoms 
are closer to Gaussians than Lorentzians. It can be 
shown by a similar argument to (20) (Nityananda & 
Narayan, 1982) that maximizing the alternative form of 
'entropy' S '  defined below (Gull & Daniell, 1978)leads 
to Gaussian peaks 

S '  = - . f  p(r) ln[p(r)] dVr. (21) 
Vr 

It might therefore be preferable to maximize (21) in 
crystallographic applications. 

It should be noted that the maximization of S '  is in 
general not equivalent to the MDM. In this regard we 
disagree with Gassmann's (1976) claim that the MDM 
is equivalent to maximizing any general function 

.f p(r) f lp (r )]  dV,. 
V, 

As shown by (7), for the one-dimensional case, 
maximizing integrals of different functions of p(r) is 
equivalent to maximizing different functions of the 
Karle-Hauptman matrix. It is only the form (9) that 
leads to the MDM. However, when the structure has 
equal, spherical, resolved atoms, then all functions are 
equivalent and agree with the MDM in the large-d limit. 

In the MEM with S, (16) is the relation which 
determines the phases of reflections whose amplitudes 
are known. Since 0H is a function of all the FH, (16) is a 
higher-order relation among the phases of the structure 
factors (which involves their amplitudes as well). It is 
thus a generalization of the low-order relations such as 
triplets, quartets, etc. (Ladd & Palmer, 1980)which are 
extensively used. 

5. Proof of the  t h e o r e m  

It is proved below that the Karle-Hauptman (KH) 
determinant is related to the integral over the unit cell 
of the logarithm of the electron density. The proof is 
valid in all dimensions. However, for notational 
convenience, it is presented for the two-dimensional 
case. The fractional coordinates x and y run from -½ to 
+½. 

oo 

p(x,y)  = Z ~. Fro., exp[2~/(mx + ny)]. (22) 
m , n = - o o  

If we let m, n, r and s run from - p  to +p, the KH 
matrix A reads 

Am,,,rs=rm_r,n_ s. (23) 

The index pairs mn and rs which label the rows and 
columns take (2p + 1) 2 values and this defines the 
dimension d of the matrix A. The relation to be proved 
reads 

1 112 

Lim - In det A = .f f ln[p(x,y)] dx  dy. (24) 
p~oo d -1/2 

The proof goes as follows. The first step is to 
truncate the Fourier series (22) to the range - N  < m,n 
< N. This defines a truncated density Pt(x,y) (equation 
25). In the limit N ~ oo, Pt(x,y) is equivalent to p(x,y)  in 
(24) (see equations 26, 27). Next the integral in (24) is 
approximated by a discrete sum with d terms (equation 
28) which is again permissible in the limit d-* oo. The 
sum of sampled values of ln p t is then written 
(equations 29, 30) as the logarithm of a diagonal 
determinant detA'" .  By a unitary transformation 
(equations 31 to 34), this becomes a determinant made 
up of structure factors. Two further modifications 
(equations 39, 40) are needed to obtain the left-hand 
side of (24). It is essential to verify that the errors in 
these modifications vanish as d--,oo. This requires 
representing the determinant as an integral, as shown in 
the Appendix. 
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The set of m,n such that - N  <_ m,n < N is called R N. 
The truncated density is then given by 
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(28) 

Pt(x,y) = y y Fro.,, exp[2a/(mx + ny)]. (25) 
m,n ~ R x 

We assume that p(x,y) has a minimum value Pm which 
is non-zero, and also that the amplitudes of the Fourier 
coefficients are bounded by C e x p [ - ( m  2 + nE)/N2sl. 
Both these are assured by zero-point and thermal 
vibrations. In practice, the existence of a positive Pm is 
further ensured since F 0 will be adjusted, as discussed in 
§ 3. From the uniform convergence of the Fourier 
series it follows that, for any e however small, it is 
possible to find an N~ such that 

IPt(x,y ) -- p(x,y)l < e for all x,y; N > N~. (26) 

Choosing e less than Pro, we get a positive lower bound 
Ptm for Pt" The error in replacing In p by In Pt is therefore 
controllable, i.e. 

I J .1 In p dx dy -.1 f In Pt dx  dyl < e /p t  m. (27) 

Likewise, the error on replacing the integral of the 
continuous function In Pt by a sum is clearly controll- 
able, i.e. 

[ 1 
f J l n P t d x d y  ( 2 p +  1) 2 

x In Pt 2 p +  1 '  2 p +  1 
m , n = - p  

We choose p > N. 
We now rewrite the sum in (28) as follows 

(29) 

f z { (  m 1 In Pt ' 

( 2 p +  1) 2 2 p +  1 2 p +  1 
m , n = - - p  

1 
= - In det A "' ,  

d 

where 

( m n ) 
A ' "  ~- (~mr(~nsPt , . (30) 
--m.,~ 2 p +  1 2 p +  1 

Let us introduce A" defined as follows: 

A" = U - t  A'"  U, (31) 

where the unitary matrix U is given by 

1 [ 2ai ( m r + n s ) ]  (32) 
Um,,.rs (2p + 1) exp (2p + 1) 

From (31), (32) and (33) 

A "  - - -  Pt 2p + 1 2p + 1 kt.rs (2p + 1) 2 m,,,=-p 

X exp (2p + 1) 

(34) 

Substituting (25) into (34), we find that the elements of 
A" are just the structure factors. Since k - r and l -  s 
both range from - 2 p  to +2p, we reduce these to the 
range - p  to +p by adding or subtracting (2p + 1). 
Denoting the result of this operation by red (k - r) and 
red (l - s) (red for reduced), we then find that 

A~tt.rs = Fred~k_r).red~l_s~; /red (k - r), r e d ( l -  s)} ~ R N 

(35) 

= 0 otherwise. (36) 

We finally prove the desired result, (24), by showing 
that we can replace A by A". Let us define the following 
matrix A'. 

A ' . r  = F m _ r . , _ ~ ; ( m - r , n - s ) ~ R N  (37) 

= 0 otherwise. (38) 

We therefore have to show that for N and p sufficiently 

U -1 - -  exp (km + In . 
kt,mn (2p + 1) (2p + 1) 

(33) 

large, 

i1 1 ] - In det A' - - In det A" < e 2 (39) 
d d 

[1 1 I - - In det A' < 61. (40) ~ In det A d 

The full proof of (39) and (40) is involved and is hence 
given in the Appendix. However, we point out that (39) 
and (40) are similar to certain well-known results in the 
statistical mechanics of crystals. Let us regard the 
Hermitian forms (see equation 41 in the Appendix) 
associated with the matrices A, A' and A" as 
Hamiltonians with Xmn; Xmn" playing the role of 
coordinates and momenta at the site mn of a 
two-dimensional crystal. A describes a situation in 
which every site is coupled to every other, with the 
interaction F,,,,,.r s falling exponentially (we have 
assumed an exponential bound for the structure 
factors). A'  describes a lattice in which the interaction 
is cut off outside a square of side N. A" describes the 
same cut-off interaction but with periodic boundary 
conditions. 1/din detA is the free energy per site. 
Equations (39) and (40) express the intuitively obvious 
results that, in the limit of a large crystal, the free 
energy per site is unchanged by introducing periodic 
boundary conditions or by truncating the tail of the 
interaction. 
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A P P E N D I X  
The proof of equations (39) and (40) involves the 
following identity for a positive definite Hermitian 
d × d matrix B. Let x be a d × 1 column vector with 

? • ?? 
complex elements x I + tx 1, ..., x '  a + tx~t'. The 
Hermitian form H(B) is defined by 

H(B) = x + Bx. (41) 

Denoting integration with respect to x '  1, x '  1' . . . . .  x~, x~t' 
by dx, we define F(B) by 

1 
F(B) = - - l n [ f  exp{-H(B)  } dx]. (42) 

d 

One can introduce a new set of variables by a 
unitary transformation V which diagonalizes H. The 
Jacobian is unity: 

x = Vy; x + Bx  = y* Ay = 21 [y112 -b . . .  -k- /1dlYd 12, (43) 

where A = V* B V is diagonal and we choose the y's so 
that 21, 22, ..., 2 d, the real positive eigenvalues of B, are 
in ascending order. Inserting (43) into (42) and 
integrating we obtain 

1 1 
F(B) = --In zc + - In (21 22.../1d) = --In zr + - In det B. 

d d 
(44) 

We now introduce the following notation for 
averages 

f Xexp[--H(B)] dx 

( X ) n -  f exp[--H(B)] dx ' (45) 

where X is a function of the x~'s. We then have 

(x'~ x i ) =  Z I V/jI2/2i < 1/21, (46) 
J 

where we have used the fact that V is unitary and that 
21 is the smallest eigenvalue of B. Using the Schwartz 
inequality we also have 

I(X? Xj) < [(X? Xi)(X ? Xj)] 1/2 < 1//11. (47) 

To prove (39) and (40) we need an upper bound for 
IF(B1) -- F(B2)I. We define 

B(2) = (1 - /1 )B1  + AJ32; 0 < / 1 < 1  (48) 

B ( 0 ) = B I ;  B ( 1 ) = B  2. (49) 

We further define f (2)  which interpolates between 
F(B1) and F(B2): 

1 
f ( / 1 ) = - - l n f  exp{-H[B(/1)]}dx.  (50) 

d 

Differentiating (50), we have 

df  1 
- -  (H(B, - -B2))8(a)  (51) 

d2 d 

d2 f  1 
d/12 = - ~  { ( [ H ( B , -  B2)lZ)~(a, 

- - [ ( H ( B , -  B/)>B,a,I 2 } < 0. (52) 

The inequality in (52) arises because the mean square is 
larger than the square of the mean. Since d2f/d22 < 0, 
d f / d 2  clearly assumes its greatest absolute value G at 
either/l = 0 or/1 = 1. We thus obtain G by substituting 
either B 1 or BE for B(/1) in (51). 

1 G maxl l l I (53) 

We use G to bound 

lid l I F ( B 1 ) -  F(B2)I < ~--~ d2 <_ G. 

Therefore, 

i I 1 Ii 1 I - l n d e t B  l - - l n d e t B  2 < - ( H ( B  1-B2))B,.  2. 
d d - 

(54) 

To prove (39), we use (54) for the case B 1 = A ' ,  
B 2 = A". Therefore, 

1 1 I 1 - l n d e t A ' - - - l n d e t A "  < ( x + ( A ' - A " ) x ) A  ..... 
d d 

(55) 

Comparing the definitions of A' and A" in (35)to (38), 
a typical non-zero term on the right-hand side of (55) 
reads 

l T l[ = IFred(m_r) ' r ed (n - s )  [ I(X*mn Xrs)l; 

( m  - r ,  n - s )  ¢~ R N, 

{red(m - r), red(n - s)} 6 R N. (56) 

The geometry of terms of the type (56) is shown in 
Fig. 1. P is the point (m,n) and Q is (r,s) in a (2p + 1) × 
(2p + 1) grid of points. We require P to be within a belt 
of width N around the boundary and a periodically 
repeated copy of Q to lie within a (2N + 1) × (2N + 1) 
square drawn around P. Counting all such terms and 
introducing the exponential bound I F.,,,I < 
C exp[ - (m 2 + n2)/N~l on the structure factors, (55) 
leads to 

I 1 1 [ K 1 C ( 2 p +  1)Ns 3 
- l n d e t A ' - - l n d e t A " l  < , (57) 
d d 21d 

where K 1 is a numerical factor. 
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Now, 21 is the lowest eigenvalue of  A'  or A" ,  
whichever is lower. The eigenvalues of  A"  clearly have 
a lower bound Ptm since they are the values ofpt(x ,y  ) on 
a grid (see equat ion 30). Since A' is the KH matrix 
associated with pt(x,y), A ' - P t m l a  (where I a is the 
d × d unit matrix) is the matrix corresponding to 
Pt-Ptm and this too has non-negative eigenvalues. 
Thus Pin is a lower bound to the eigenvalues of  A'  as 
well. Consequent ly,  the right side of  (57) clearly tends 
to zero as N ~ oo (p  > N also ~ oo) and (39) is proved. 

We now apply the bound (54) with B 1 = A',  B 2 = A. 
We obtain a result similar to (55) with a typical term 
now reading 

[T2[=[Fra_r,n_s[[<X*mnXrs>['~ ( m - r , n - s ) ~ R  N. 

(58) 

In Fig. 1, this implies that  P can lie anywhere  in the 
square, but Q should be outside a (2N + 1) x (2N + 1) 
square drawn around P. Summing over the terms and 
introducing the exponential  bound on the structure 

r 7 

N-~ I 
I 

I I 

: ~2N+ - - - I  

• I I ,I 0 ' '  
6 I " 1 

L . . . . . . . . . .  4J I 
I 
I I 
L . . . . . . . . .  J 

' 2p*l 
Fig. 1. P and Q are the points (m,n) and (r,s) in a (2p+ 1) x 

(2p + 1) square grid. The elements of A' and A" (see equation 
56) differ when P lies within the indicated belt around the 
boundary and a periodic copy of Q, viz Q', lies within the square 
centred on P. The elements of A and A' (see equation 58) differ 
for all positions of P provided (2 lies outside the square around P. 

factors,  we  obtain  

I~ 1 I K2N2s Cexp( -N2/N2s) ' (59)  
In det A - - In det A'  < 

d 21 

which again tends to zero as N ~ oo, thus proving (40). 
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